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ABSTRACT

A hidden Markov model is developed to simulate tropical cyclone intensity evolution dependent on the

surrounding large-scale environment. Themodel considers three unobserved (hidden) discrete states of storm

intensity change and associates each state with a probability distribution of intensity change. The storm’s

transit from one state to another is described as a Markov chain. Both the intensity change and state transit

components of the model are dependent on environmental variables including potential intensity, vertical

wind shear, relative humidity, and ocean feedback. This Markov Environment-Dependent Hurricane In-

tensity Model (MeHiM) is used to simulate the evolution of storm intensity along the storm track over the

ocean, and a simple decay model is added to estimate the intensity change when the storm moves over land.

Data for the North Atlantic (NA) basin from 1979 to 2014 (555 storms) are used for model development and

evaluation. Probability distributions of 6- and 24-h intensity change, lifetime maximum intensity, and landfall

intensity based on model simulations and observations compare well. Although the MeHiM is still limited in

fully describing rapid intensification, it shows a significant improvement over previous statistical models (e.g.,

linear, nonlinear, and finite mixture models).

1. Introduction

Tropical cyclones (TCs) are one of themost destructive

natural phenomena on Earth and are the leading cause of

great social and economic losses (Geiger et al. 2016;

Pielke and Landsea 1998). Accurately assessing TC-

related risk is of great importance. However, while TC

intensity plays a large role in the damage potential of a

storm, TC intensity modeling is still limited (Rappaport

et al. 2009; Manganello et al. 2012). This is mainly be-

cause the intensity evolution of TCs involves complicated

dynamic and thermodynamic processes that have not

been fully resolved (Bender et al. 2010; Camargo and

Wing 2016). Apart from internal variability (e.g., eyewall

replacement cycles; Willoughby et al. 1982), the storm

environment plays a key role in controlling the storm’s

intensity evolution. The prestorm sea surface tempera-

ture (SST) has been considered as one of the most im-

portant environmental variables (Knutson et al. 2010),

since TCs draw their energy from the underlying seawa-

ter. Emanuel et al. (2004) used an ocean coupled model

to show that other environmental factors, including

maximum potential intensity (MPI) and vertical wind

shear, also have great influences on storm intensity.

Furthermore, the interaction between TC and the ocean

can significantly influence TCs’ intensity. The entraining

of cold, deep water induced by storm’s surface windsmay

cause strong cooling of SST and thus negatively affect a

storm’s intensification (Schade and Emanuel 1999; Lloyd

and Vecchi 2011).

Due to a combination of inner-core, oceanic, and

large-scale environmental processes, many TCs undergo

rapid intensification (Kaplan and DeMaria 2003) during

their life cycles. Rapid intensification (RI) is the signif-

icant strengthening of a TC in a short time [specifically,

intensity increases by 30 kt (1 kt ’ 0.51m s21) or more

over 24 h], and almost all historical category 4 and 5

hurricanes are RI storms (Kaplan and DeMaria 2003).

Accurately predicting RI is not only important in
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real-time forecasting (Toepfer et al. 2010), but also plays

an important role in reproducing TC intensity climatol-

ogy, as the RI storms control the tail (including possibly a

secondary peak) of the statistical distribution of a TC’s

maximum lifetime intensity (LMI) (Lee et al. 2016a).

However, the prediction of RI is still a great challenge,

and few operational models are skillful in predicting RI

(Elsberry et al. 2007). To fill the gap, Kaplan and

DeMaria (2003) defined the rapid intensification index

(RII) as a probabilistic guidance. A revised RII is further

developed to estimate the probability of RI occurrence

for variousRI thresholds and for different basins (Kaplan

et al. 2010). Although the probabilistic RII forecast is

generally skillful compared to the baseline climatology,

the false alarm rate of RII is still high, especially for the

North Atlantic basin (Kaplan et al. 2010).

Despite the challenges, various statistical methods

have been applied to model TC intensity change as a

response to environmental forcing. One widely used

model is the Statistical Hurricane Intensity Prediction

Scheme (SHIPS; DeMaria and Kaplan 1994; DeMaria

and Kaplan 1999; DeMaria et al. 2005), which estimates

TC intensity change as a linear regression function of

key environmental variables (e.g., MPI, vertical wind

shear, upper-level winds) and TC characteristics (e.g.,

current intensity, previous intensity change, and storm’s

translation speed). Lee et al. (2015) narrowed down the

essential predictors in SHIPS to a smaller pool and

developed a simpler linear regression model. Lee et al.

(2016b) improved this model by adding a stochastic

component to better capture the statistical distributions

of TC intensification rate and LMI.

More recently, Lin et al. (2017) applied advanced sta-

tistical techniques to further explore the dependence of

TC intensity change on the environmental variables, in-

cluding the newly developed ventilation index (VI; Tang

and Emanuel 2012). They found that applying the three

component variables of VI (i.e., MPI, vertical wind shear,

and entropy deficit) is statistically better than applying

VI as a single variable, and the simpler relative humidity

represents the entropy deficit relatively well. After

identifying the most important environmental variables,

Lin et al. (2017) developed linear, nonlinear, andmixture

regression relationships betweenTC intensity change and

these variables. In particular, they found that the statis-

tical R2 of their linear and nonlinear models is similar to

that of SHIPS, but the statistical R2 of their mixture

model (involving multiple subgroup models) is signifi-

cantly higher, indicating that the dependence of TC in-

tensity change on the environment is nonhomogeneous.

More interestingly, their mixture regression analysis

identified three regimes/states of intensity change: static,

normal, and extreme, reflecting a storm’s slow, moderate,

and rapid intensity change, respectively, during its life cy-

cle. However, applying the mixture model to predict TC

intensity evolution requires adding a classification model

to identify which regime the storm belongs to at each time

step, which can induce large uncertainties/errors, espe-

cially for extremes related to RI (Lin et al. 2017).

Motivated by the findings of Lin et al. (2017), here we

model TC intensity evolution as a dependent hidden

Markov process. This new model is called the Markov

Environment-Dependent Hurricane Intensity Model

(MeHiM). Like the mixture model, the MeHiM con-

siders three unobserved (hidden) states of intensity

change and associates a probability distribution of in-

tensity change with each state. Unlike the (statistical)

mixturemodel, which assumes that the state identity for a

time step is conditionally independent of that for another

time step, the (stochastic) MeHiM considers the storm’s

transit from one state to another as a Markov chain.

Both the intensity change and state transition compo-

nents of the MeHiM are dependent on identified envi-

ronmental variables. To keep themodel relatively simple,

we apply only four environmental variables (i.e., MPI,

vertical wind shear, relative humidity, and an ocean

feedback parameter) and two storm variables (i.e., cur-

rent intensity and previous intensity change). Few of the

developed ocean feedback parameters (e.g., Schade and

Emanuel 1999; Vincent et al. 2012; Balaguru et al. 2015),

which indicate ocean–storm interaction, have been eval-

uated in statistical modeling of TC intensity. Here we

adopt the ocean feedback parameter of Schade and

Emanuel (1999), which has also been used in a simplified

dynamical model (Emanuel 2017), and we test its impact

on the overall performance of the MeHiM.

The MeHiM is developed to predict the intensity

change of storms moving over the ocean. To simulate

the intensity evolution over storm’s entire life cycle, we

add a simple decay model to predict a storm’s intensity

change over land. Here we develop the model for the

North Atlantic basin, though the same methodology can

be applied to other basins or on the global scale. To

evaluate the developed model, we apply it to simulate

intensity evolution of historical storms using observed

tracks and environment taken from reanalysis datasets.

The performance of the model is measured by its ca-

pability to reproduce the observed TC intensity metrics,

including spatial distribution of intensity over the basin,

probabilistic distributions of intensification rate, LMI,

and landfall intensity, as well as temporal evolution of

intensity for sample cases. We focus particularly on the

model’s capability to capture the extremes related to RI.

The MeHiM improves on the mixture model of Lin

et al. (2017), because 1) it accounts for the (possibly

large) temporal correlation of the states (e.g., slow,
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moderate, rapid) of intensity change over storm’s life

cycle and 2) it integrates the mixture model of intensity

change and the identification model of intensity change

state within a Markov framework, avoiding statistical

inconsistency between the two components. It is in-

teresting to ask whether these improvements in meth-

odology will lead to significant improvements in the

model performance, especially in capturing RI related

extremes. To answer this question, we build the mixture

model (with an added identification model) using the

same probability distributions (i.e., Gaussian for in-

tensity change and logistic for state identification), en-

vironmental and storm variables, and observational

datasets as in the MeHiM. In addition, we build the

(Gaussian) linear regression model (similar to SHIPS)

using the same variables and datasets to provide a

baseline. The linear and mixture models are run in

parallel with the MeHiM, and the simulation results are

compared among the models and with the observations.

This paper is organized as follows: Following this in-

troduction, the development of the models (i.e., linear

regression model, mixture regression model, MeHiM,

and land decay model) is described in section 2. Model

simulation results are shown and evaluated in section 3.

Section 4 discusses the effects of adding the ocean

feedback parameter and correctly identifying the ex-

treme state of intensity change in the MeHiM. Section 5

summarizes the main findings of the study.

2. Model development

Three statistical TC intensity models are developed to

predict 6-hourly storm intensity change (DV): the linear

regression model, mixture model (with an added state

identification model), and MeHiM. We build these

models on the same six variables: intensity change in the

previous step (DVp), the current intensity (V), MPI,

vertical wind shear (SHR), relative humidity (RH), and

an ocean feedback predictor (OCN). Apart from these

intensity models, which are used to simulate a storm’s

intensity change over the ocean, we also add a simple

land model to simulate the decay of the storm intensity

over time when the storm moves on land.

All models are developed based on historical records

from 1979 to 2014 in the North Atlantic basin. The TC

dataset is taken from the IBTrACS WMO archive

(Knapp et al. 2010). It includes 6-hourly latitude and

longitude positions and 10-min maximum sustained

wind speeds at 10m above the sea surface. The location

data are used to calculate the translational velocity of

the storm. The storm maximum wind intensity V is es-

timated by subtracting the surface background wind,

estimated as a fraction (0.55 at 208 cyclonically) of the

storm translation velocity (Lin and Chavas 2012), from

the observed maximum wind. The 6-h intensity change

DV (and DVp) is then obtained from the time series of

the estimated storm maximum wind intensity.

The atmospheric variables are derived from the ERA-

Interim reanalysis with a resolution of 0.758 3 0.758,
produced by the European Centre for Medium-Range

Weather Forecasts (ECMWF; Dee et al. 2011). The

maximum potential intensity is theoretically derived fol-

lowing Emanuel (1995) and Bister and Emanuel (1998,

2002). Similar to that in previous studies (e.g., DeMaria

and Kaplan 1994; Lin et al. 2017), the deep-layer vertical

wind shear is defined as the difference between the 850-

and 200-hPa level winds, averaged over a 200–800-km

annulus around the storm center. High-level relative

humidity is computed as the averaged relative humidity in

the layer between 300 and 500hPa within a 500–800-km

annulus around the storm center.

In addition to the atmospheric predictors, we also

incorporate OCN, developed by Schade and Emanuel

(1999) based on numerical modeling, to represent the

ocean’s negative impact on storm intensification. OCN

is defined as

OCN5 12 0:87e2z , (1a)

where

z[ 0:01G20:4h
m
u
T

MPI

V
, (1b)

where uT is the storm translation speed, hm is the ocean

mixed layer depth, and G is the thermal stratification

below the ocean mixed layer. OCN is a number between

0 (strong weakening influence on the storm) and 1 (weak

influence); it is closer to 0 when the storm is stronger,

moving more slowly, with a shallower mixed layer

depth, and/or with stronger thermal stratification. OCN

is more sophisticated than other ocean variables such as

the ocean temperature averaged over the mixing layer

and the ocean heat content, which indicate only the

amount of heat stored in the ocean and are incapable of

representing the interaction between the storm and

ocean. The ocean heat content is used in SHIPS, but the

data are available only for a limited time period and

over a limited part of the Atlantic basin (Mainelli et al.

2005); the ocean temperature averaged over the mix-

ing layer was found to be an insignificant predictor of

TC intensification (Lee et al. 2015). To estimate the

variables in OCN, we take the ocean’s salinity and po-

tential temperature from the Ocean Reanalysis System

4 (ORAS4; Balmaseda et al. 2013). The mixing layer

depth hm is computed following de Boyer Montégut
et al. (2004) with a temperature difference criterion of
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0.58C. The variable G is estimated as the temperature

gradient within 100m below the mixed layer depth.

The following four subsections describe the develop-

ment of the three over-the-ocean intensity models and

the land decay model with statistical fitting results. In all

statistical analyses, variables are standardized so that all

variables are on the same scale. To maximize the utili-

zation of the data, we train the models considering all

555 North Atlantic TCs from 1979 to 2014. However,

since a TC behaves differently when over land, we fil-

tered out these observations (used for training the land

decay model) by dividing the storm’s intensity evolution

into multiple temporal sequences (as temporal se-

quences of storm intensity are needed for training

MeHiM). That is to say, the time series may begin with

either the genesis of the storm or the first observation

after the storm makes landfall and moves back to the

ocean again. The time series ends when the storm dies or

hits land. Sometimes the temporal sequences can be

very short when a storm hits land twice within a short

period of time. These short sequences are considered as

the ‘‘noise’’ of the training data and thus are not used.

After removing sequences that are shorter than 12 ob-

servations (i.e., 3 days), 9809 observations coming from

332 storms (347 time series) remain for training each of

the three intensity models. The models are evaluated in

terms of their capability of capturing the statistical dis-

tributions of various intensity and intensificationmetrics

and simulating realistic sample cases of intensity evo-

lution, for all the 555 storms from 1979 to 2014, as dis-

cussed in following sections. We also evaluate the

models using nonoverlapping training (271 storms) and

testing (284 storms) datasets, as shown in the online

supplemental material.

a. OLS

For a linear regression model with ordinary least

squares (OLS), the probability distribution of the pre-

dictandY is Gaussian, as shown in Eq. (2), whereY is the

6-h intensity change (DV), and X is the vector of pre-

dictors (i.e., DVp, V, MPI, SHR, RH, and OCN):

Y;N (a1Xb,s). (2)

The model coefficients a and b are estimated by mini-

mizing the squared residual error (i.e., OLS). The esti-

mated model coefficients as well as the standard

deviation s are shown in Table 1. The signs of the co-

efficients in front of all variables are as expected (based

on previous studies; e.g., DeMaria and Kaplan 1999;

Schade and Emanuel 1999; Lin et al. 2017), that is, DV is

positively (negatively) correlated to DVp (V), and it is

expected to increase whenMPI and RH are larger, SHR

is smaller, and/or ocean cooling is weaker (OCN larger).

The storm’s last-step intensification DVp is shown to be

the strongest predictor, followed by the current intensity

V. Among the environmental variables, MPI and SHR

aremore important thanRHandOCN. The intercepta is

nearly zero, which means that the expected value of 6-h

intensity change DV is nearly 0 when all five predictors

are at their means (i.e., standardized values being zero).

b. FMR

The finite mixture regression (FMR) extends the OLS

by incorporating a heterogeneous structure into the

model. In this model, each observation is considered to

be a randomsample generatedby one of its k components

(groups/clusters), while the identity of the generating

component is not observed. In a Gaussian setting, each of

the k components is a linear regression, and the proba-

bility distribution of the predictand Y is mixed Gaussian,

that is,

Y; �
k

r51

w
r
N (a

r
1Xb

r
,s

r
), (3)

wherewr is the component mixing proportion/weight, ar

and br are regression coefficients, and sr is the standard

deviation, for each component r. These model parame-

ters can be estimated from data using the maximum

likelihood estimation method with the generalized

expectation-maximization (EM) algorithm (McLachlan

and Krishnan 2007). The EM algorithm also estimates

the probability that each observation was generated

from each of the k groups, providing an optimal group

identification for each observation.

Based on the same dataset as for the OLS, the esti-

mated model parameters for FMR with three groups

(k 5 3) are shown in Table 2. The obtained group

weights and features are similar to those from the FMR

analysis of Lin et al. (2017). Specifically, over 60% of the

observations are optimized by the EM algorithm into

group 2, nearly 30% into group 1, and only less than 10%

into group 3. Groups 1, 2, and 3 again feature ‘‘static,’’

‘‘normal,’’ and ‘‘extreme’’ intensity change (DV), re-

spectively, in the sense that, first, the expectation of

intensity change as a response to the environment is

weak for group 1, relatively strong for group 2, and the

strongest for group 3 (as indicated by the magnitude of

the model coefficients in front of the environmental

TABLE 1. Coefficients of the OLS model.

Intercept DVp V MPI SHR RH OCN s

0.000 0.472 20.123 0.083 20.081 0.046 0.044 0.844
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variables); and, second, the model standard deviation

sr (representing the width of the subgroup Gaussian

distribution) increases significantly from group 1, to

group 2, and to group 3. As a result, the sample mean

of DV (average over all observations optimally as-

signed to the group) vary around zero in absolute value

(20.07 for group 1, 0.84 for group 2, and 20.13 for

group 3) but the sample standard deviation of DV in-

creases substantially from group 1 (0.48), to group 2

(5.75), and to group 3 (13.90), indicating that, regard-

less of the environmental conditions, small intensity

change observations are assigned into group 1, extreme

intensification (and deintensification) into group 3,

and the rest into group 2. Such grouping features will

be further discussed with the Markov model analysis.

Unexpected signs of the model coefficients for V and

RH are obtained for group 1, possibly due to statistical

compensation.

The FMR is not a predictive model, and conducting

simulations with FMR requires assigning group weights

or membership for the new observation. Similar to Lin

et al. (2017), we add a multinomial logistic regression

[Eq. (4)] as a classificationmodel to determine the group

membership probabilities pr for the new observation X

(i.e., DVp, V, MPI, SHR, RH, and OCN),

p
r
(X)5

exp(u
r
1Xg

r
)

�
k

j51

exp(u
j
1Xg

j
)

. (4)

The multinomial logistic regression model is fitted based

on the FMR optimized group memberships, and the ob-

tained model coefficients (ur, gr) are shown in Table 3.

To meet the constraint p1 1 p2 1 p3 5 1, we have ar-

bitrarily picked group 3 as the baseline group (all co-

efficients are assigned to be zero). Thus, the linear

combination of covariates for group 1 (first row) de-

scribes the log odds of belonging to group 1 versus

belonging to group 3, and, similarly, the linear combina-

tion of covariates for group 2 (second row) describes the

log odds of belonging to group 2 versus belonging to

group 3. As an example, a one-unit, or one standard de-

viation, increase in the variable DVp is associated with a

decrease in the log odds of belonging to group 1 versus

belonging to group 3 in the amount of 0.360 (coefficient of

DVp). At the same time, a one-unit increase in the vari-

ableDVp is also associatedwith a decrease in the log odds

of belonging to group 2 versus belonging to group 3 by

0.295. Thus, with other covariates fixed, an increase in

DVp will cause the new observation more likely to be

assigned to group 3.

To obtain a more general view of the obtained clas-

sification model, we estimate the group membership

probabilities for three specific scenarios. When all var-

iables of the new observation are at their medians (over

all samples in the dataset), the probabilities that it be-

longs to groups 1, 2, and 3 are 0.41, 0.57, and 0.02, re-

spectively. When all variables of the new observation

are at the 95th percentile favorable for larger DV

(according to the expected coefficient signs shown in

Table 1), the probabilities that it belongs to groups 1, 2,

and 3 are 0.37, 0.61, and 0.02, respectively. When all

variables of the new observation are at the 95th per-

centile unfavorable for larger DV, the probabilities that

it belongs to groups 1, 2, and 3 are 0.25, 0.72, and 0.03,

respectively. The probabilities obtained in the three

scenarios are relatively close, indicating that the model

may be limited in capturing the change in the member-

ship probability as a response to the change of the pre-

dictor variables. Moreover, the probability of belonging

to the extreme group (group 3) is always significantly

smaller than the group weight from the optimization

(;9%; Table 2). This limitation in capturing the ex-

treme state by the FMR classification model was also

noted by Lin et al. (2017). This limitation is reduced in

the Markov model.

TABLE 2. Coefficients of the FMR response model.

Weights Intercept DVp V MPI SHR RH OCN sr

Group 1 0.298 20.107 0.010 0.002 0.035 20.004 20.009 0.011 0.094

Group 2 0.610 0.067 0.687 20.123 0.104 20.085 0.057 0.054 1.119

Group 3 0.092 0.086 0.275 20.424 0.093 20.263 0.110 0.123 2.706

TABLE 3. Coefficients of the FMR classification model.

Intercept DVp V MPI SHR RH OCN

Group 1 2.851 20.360 21.043 0.037 20.178 20.285 20.216

Group 2 3.354 20.295 20.728 20.173 20.220 20.100 20.121

Group 3 0 0 0 0 0 0 0
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c. MeHiM

The MeHiM is based on the idea of the hidden Mar-

kov model (HMM; Rabiner 1989; Cappé et al. 2006), an
effective tool for modeling stochastic processes. In an

HMM, the visible observations are distributed accord-

ing to the underlying hidden states, where the states are

discrete and are assumed to form a first-order Markov

process. With a selected number k of states, an HMM

can be fully determined by the following three sets of

parameters:

1) Initial state probability pi: the probability of starting

from state i(i 5 1, 2, . . . , k).

2) Transition probability pij: the probability of moving

from state i to j(j 5 1, 2, . . . , k).

3) Response distribution fYi
: the distribution of the

response variable Y in state i.

The HMM can be extended to the dependent HMM

with the above model parameters dependent on cova-

riates (Zucchini et al. 2016). Then, the likelihood of a

response observation sequence y1:T 5 y1y2 � � � yT , given
the covariates sequence x1:T 5 x1x2 � � � xT , is

L(y
1:T

jx
1:T

)

5 �
k

s151

p
s1
(x

1
)f

Ys1

(y
1
jx

1
)P

T

t52

p
st21st

(x
t
)f

Yst

(y
t
jx

t
) , (5)

where st denotes the state at time t, and all three model

components (i.e., initial state probability, transition

probability, and response probability) depend on the

covariates. For the entire dataset, the total likelihood is

the product of the individual likelihood functions for all

sequences.

The basic idea of a dependent HMM is applied in the

MeHiM to model the sequence of TC intensity change

(DV) over the storm’s lifetime dependent on the se-

lected storm and environmental covariates (i.e., DVp,V,

MPI, SHR, RH, and OCN). Motivated by the FMR

analysis, we assume the storm is in one of three hidden

states (k 5 3) at each time step.

Given the state, the response distribution is assumed

to be Gaussian, that is,

Y
i
;N (a

i
1Xb

i
,s

i
), (6)

dependent on the six predictor variables as in the OLS

and FMR models.

Similar to the FMR analysis, we apply the multino-

mial logistic regression to model the transition proba-

bility that the storm moves from the present state to the

next state, that is,

p
ij
5

exp(u
ij
1Xg

ij
)

�
k

j51

exp(u
ij
1Xg

ij
)

. (7)

The transition model (33 3 probability matrix) contains

three multinomial logistic regressions for each of the

three states, dependent on all 6 predictor variables. The

initial state probabilitiespi are similarly determined by a

multinomial logistic regression.

The parameter fitting process for MeHiM involves

the backward–forward algorithm for likelihood calcu-

lation and the Baum–Welch method, an iterative pro-

cedure for optimization similar to the EM method.

In addition to model coefficients, the optimal state se-

quence can be estimated through the Viterbi algorithm

(Zucchini et al. 2016). A more detailed description of

the algorithms can be found in the statistical R package

depmixS4 (Visser and Speekenbrink 2010).

Figure 1 shows observed DV colored by estimated

optimal states. The first state has a sample mean close to

zero (20.05) with a small sample standard deviation

(0.50); the second state features a moderate positive

mean (0.43) and variation (5.31); the third state has a

FIG. 1. MeHiM optimal states for (a) all data and (b) a sample

storm. All observations of DV are plotted with colors denoting the

optimal states given by MeHiM fitting.
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large positive mean (3.04) but also a large standard de-

viation (10.85) with DV taking large negative and pos-

itive values. The three regimes of intensity change also

appear clearly as three phases during the lifetime of

individual storms. As listed in Table 4, the model stan-

dard deviations of the three states vary in similar pat-

terns as for the three subgroups in FMR (Table 2).

Similar explanations can be applied here so that the

three underlying states represent storm’s ‘‘static’’ (state

1), ‘‘moderate’’ (state 2), and ‘‘extreme’’ (state 3) in-

tensification. (A sensitivity test shows that, if k 5 2, the

‘‘static’’ and ‘‘moderate’’ states are combined and, if k5 4,

the ‘‘static’’ group is separated into a groupwith nearly no

intensity change and a groupwith slight intensification. In

both cases, the ‘‘extreme’’ group includes the largest in-

tensification and deintensification cases, similar to the

case of k 5 3.)

Other estimated parameters of the response com-

ponent of the MeHiM are also shown in Table 4.

Similar to FMR results (Table 2), the estimated co-

efficients are mostly with expected signs, except for V

in state 1 and RH in states 1 and 3, though these co-

efficients are all relatively small in absolute value.

Actually, all coefficients in state 1 are quite small

compared with those in states 2 and 3, and thus DV in

state 1 is not sensitive to the change in the predictors.

These parameters of the response model will be fur-

ther examined together with the parameters of the

transition model.

The estimated coefficients of the transition compo-

nent of the MeHiM are shown in Table 5. Three multi-

nomial logistic models are developed for each of three

original states, and transitioning to state 3 is picked as

the baseline (all coefficients set as zero). The signs and

the relative magnitude of the regression coefficients

jointly determine the change of the transition proba-

bilities as a response to the change of the covariates.

Consider the coefficients for storms that are currently in

state 1 as an example. The linear combination of co-

variates describes the log odds of the storm staying in

state 1 versus transitioning to state 3 (Table 5, first row)

and that of the storm transitioning to state 2 versus to

state 3 (Table 5, second row). For instance, a one-unit, or

one standard deviation, increase in the variable DVp is

associated with an increase in the log odds of staying in

state 1 versus transitioning to state 3 in the amount of

0.329. At the same time, an increase in the variable DVp

is also associated with an increase in the log odds of

transitioning to state 2 versus to state 3 in the amount of

0.501. Thus, when all other covariates are fixed, an in-

crease in DVp will cause storms in state 1 less likely to

transit to state 3. Similarly, a one-unit increase in MPI

will lead to a decrease in both the odds of staying in state

1 versus transitioning to state 3 and the odds of tran-

sitioning to state 2 versus to state 3. Thus storms are

more likely to transit to state 3. In contrast, a one-unit

increase in RH will lead to an increase in both of these

odds and thus a decrease in probability of transitioning

to state 3. In this case, the probabilities of both tran-

sitioning to state 2 and staying in state 1 will grow, with

the probability of transitioning to state 2 growing more

rapidly than that of staying in state 1.

The effect on DV of the change in each covariate

depends on both the transition probabilities and re-

sponse distributions; this is particularly true for the

MeHiM, where the two model components are coupled.

TABLE 4. Coefficients of the MeHiM response model.

Intercept DVp V MPI SHR RH OCN s

State 1 20.106 0.010 0.004 0.012 20.003 20.008 0.014 0.103

State 2 0.038 0.612 20.183 0.097 20.070 0.082 0.028 0.742

State 3 0.280 0.398 20.424 0.521 20.563 20.091 0.336 1.579

TABLE 5. Coefficients of the MeHiM transition model.

Intercept DVp V MPI SHR RH OCN

From state 1 To state 1 4.696 0.329 21.095 22.907 0.388 0.079 20.105

To state 2 4.564 0.501 21.200 23.176 0.334 0.242 20.215

To state 3 0 0 0 0 0 0 0

From state 2 To state 1 1.840 20.887 22.824 21.206 20.172 0.099 20.506

To state 2 3.513 20.907 21.549 21.430 20.298 0.385 20.176

To state 3 0 0 0 0 0 0 0

From state 3 To state 1 21.327 20.274 0.134 0.340 0.079 20.520 20.599

To state 2 20.315 20.247 20.317 20.022 0.391 20.101 21.116

To state 3 0 0 0 0 0 0 0
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Thus, one should combine Tables 4 and 5 to examine the

environment’s control on TC intensity change. We first

consider the two storm-related variables DVp and V. As

the coefficients in front of DVp in the response model

are all positive (Table 4), increases in DVp always lead

to increases in DV, as expected. Specifically, for storms

that are originally in states 2 and 3 (Table 5), an increase

in DVp will result in an increase in the probability of

staying in or transitioning to state 3, where the storm can

significantly grow, as the response model coefficient in

front of DVp is relatively large (0.398). For storms that

are originally from state 1 (storms that keep their in-

tensity nearly as constant, with the response model co-

efficient in front of DVp as low as 0.009), an increase in

DVp leads to a greater chance in transitioning to state 2

(Table 5), where storms will start to develop more

quickly (with the response model coefficient in front of

DVp as high as 0.612). Thus, the effect of DVp (storm

inertia) is always significant, even though the response

model coefficient in front of DVp appears to be low for

state 1. The response model coefficient in front of V is

negative for states 2 (20.183) and 3 (20.424), as ex-

pected, but it is marginally positive for state 1 (0.004).

However, with larger V, storms that are in states 1 and 2

are more likely to transit to state 3 (Table 5). Only

storms that are originally in state 3 are more likely to

transit to state 1, where V does not have an expected

negative effect on the storm’s intensification (possibly

due to statistical compensation).

The model coefficients for the four environmental

variables can be examined in a similar way. As the MPI

increases, storms that are originally in states 1 or 2 are

more likely to enter state 3 (Table 5) and hence will

intensify more rapidly due to the larger, positive co-

efficient for state 3 (0.521 vs 0.097 and 0.012) in the re-

sponse model (Table 4). However, for storms that are

originally in state 3, a largerMPImay lead to the storm’s

transitioning to state 1, where the storm will achieve a

smaller intensification. This mechanism may prevent

storms from continuously intensifying at a large rate. In

contrast, as SHR increases, storms that are originally in

state 2 are more likely to enter state 3, and hence will

deintensify more rapidly due to the larger, negative co-

efficient for state 3 (20.563 versus 20.070 and 20.003)

in the response model. Storms that are originally in state

1 are more likely to stay in state 1. Storms that are

originally in state 3 are more likely to transit to states 1

or 2, where the storm will achieve a relatively smaller

deintensification. This mechanism may prevent storms

from continuously deintensifying at a large rate. The

response model coefficient in front to RH is positive

(0.082) as expected for state 2, but it is moderately

negative for states 1 (20.008) and 3 (20.091). However,

as RH increases, storms in states 1 and 2 will be more

likely to transit to state 2 (than to state 1; Table 5). Only

storms in state 3 will be more likely to be in state 3,

where the unexpected, negative response in DV is likely

due to statistical compensation to the large responses to

other variables. The response model coefficients in front

of OCN are all positive, with the coefficient for state 3

(0.336) larger than states 2 (0.028) and 1 (0.014). As

OCN increases (ocean weakening effect decreases),

storms at all states are more likely to enter state 3

(Table 5) and intensify more rapidly. The model seems

to capture the expected large effect of ocean cooling on

storm intensification, which will be discussed further in

section 4.

Finally, we consider the overall effects of joint

changes in the covariates. We estimate the transition

probabilities for the three specific scenarios considered

in the FMR classification analysis—all variables are at

the 95th percentile of their samples that are unfavorable

for larger DV, all variables are at their medians, and all

variables are at the 95th percentile that are favorable for

larger DV—as shown in Fig. 2. We find that storms in

state 1 are around 50% likely to stay in state 1 and

around 50% likely to transit to state 2, almost regardless

of the environment. In other words, storms in state 1 are

likely to stay in state 1 (with small DV response to the

environment) or move to state 2 (with moderate DV

response to the environment). This mechanism makes

weak storms develop slowly. On the contrary, storms in

states 2 and 3 respond to the environment in different

directions. Moving from unfavorable conditions to fa-

vorable conditions, storms in state 2 are more and more

likely to transit to state 1 (with probability changes from

3% to 23% to 30%), and less and less likely to stay in

state 2 (96%–75%–68%). Storms that are originally in

state 3 are significantly more and more likely to stay

in state 3 (4%–60%–85%), as the environment changes

from unfavorable to favorable conditions. Thus, al-

though the probability of entering state 3 from states 1

or 2 is always low (0%;2%), once the storm enters state

3, it is likely to stay in state 3 and continuously achieve

rapid intensification if the environment is favorable.

This ‘‘lock-in’’ mechanism supports the development of

intensity extremes, which is a significant advantage of

the MeHiM over FMR. On the other hand, when the

environment is unfavorable, the storms are not likely to

enter state 3 or stay locked in state 3, and thus the model

does not support much the development of rapid dein-

tensification, similar to FMR.

d. Land decay model

TCs weaken quickly over land mainly due to the lack

of fuel sources and the entrainment of dry air.
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Estimating the decay of storms after making landfall or

when moving across small islands is also a key compo-

nent of TC intensity modeling. Georgiou (1985) mod-

eled the increase of central pressure proportional to the

distance from the landfall point. DeMaria and Kaplan

(1995) modeled the decrease in the maximum wind

speed as an exponential decay function of time after

making landfall. DeMaria et al. (2006) proposed a sim-

ilar model and applied it particularly for storms moving

over narrow landmasses. The decay models of DeMaria

and Kaplan (1995) and DeMaria et al. (2006) have been

applied to adjust operational forecasting, and the veri-

fication on SHIPS has shown that the inclusion of such

decay models can improve intensity forecasts in various

basins (DeMaria et al. 2006).

Here, we develop a land model based on the same

dataset (storms of 1979–2014) applied for the overocean

intensity models. The model structure is similar to that

in DeMaria and Kaplan (1995), except that we set the

reduction factor to be 1 for simplicity, neglecting the

assumed sudden intensity decrease when storms ap-

proach land. In this model, the storm’s intensity V ex-

ponentially decays as a function of time t, as shown in

Eq. (8):

V(t)5V
b
1 (V

0
2V

b
)e2at , (8)

where V0 is the storm’s original intensity prior to land-

fall, which decays with a constant temporal rate a, to a

constant background intensity Vb that a storm may

maintain over land.

To estimate a and Vb in this model, we collect all TC

intensity sequences when the storm’s center is over land.

While most of these segments are quite short, with an

average length of about 5 observations, we exclude

segments that are shorter than 2 observations (12h).

Also, as the model does not apply for storms weaker

than Vb, we assume the storms will not decay if the

landfall intensity is smaller than Vb. Accordingly, we

exclude segments with V0 smaller than 20 kt with trial

and error. The model parameters a and Vb are then

fitted based on 229 segments, and the optimal decay rate

and background intensity are estimated to be 0.049 kt

(6 h)21 and 18.82kt, respectively, by nonlinear least

squares regression. Figure 3 shows model predicted in-

tensity decay over land compared with the observation

for storms with various initial intensities. The model

can capture the intensity decay well for storms with

relatively small landfall intensities (V0 , 70), but it

may underestimate the decay for more intense storms

(Fig. 3).

3. Model evaluation

To evaluate the developed models (based on 332

historical storms during 1979–2014), we perform Monte

Carlo simulations of the intensity evolution over storms’

lifetime for all 555 historical storms during 1979–2014

and comparemodel simulations with observations. Here

the removed surface background wind is added back

to the estimated storm intensity in order to compare with

the observed maximum wind. We examine the models’

capability to reproduce the observed TC intensity met-

rics, including spatial distribution of intensity over the

basin, probabilistic distributions of intensification rate,

LMI, and landfall intensity, as well as temporal evolution

of intensity for sample cases.We also evaluate themodels

using nonoverlapping training (271 storms) and testing

(284 storms) datasets; the results are similar and shown in

the supplemental material.

a. Monte Carlo (MC) simulation

For all simulations, the storm is initialized by the first

two steps of observed intensity to obtain initial V and

FIG. 2. Examples of MeHiM transition probabilities when all covariates are (a) at 95th percentile of their samples that are unfavorable

for larger DV, (b) at their medians, and (c) at 95th percentile of their samples that are favorable for larger DV. Variables in (a) areDVp5
29.14 kt (6 h)21,V5 94.4 kt,MPI5 24.48 kt, SHR5 41.2 kt, RH5 37.73%, andOCN5 0.398. Variables in (b) areDVp5 0.10 kt (6 h)21,

V5 34.4 kt, MPI5 141.0 kt, SHR5 13.9 kt, RH5 50.0%, andOCN5 0.933. Variables in (c) are DVp5 9.61 kt (6 h)21,V5 15.3 kt, MPI5
161.6 kt, SHR 5 1.3 kt, RH 5 69.5%, and OCN 5 0.999.
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DVp. Then, for the OLS, the intensity change for each

step is obtained by sampling from a Gaussian distribu-

tion [Eq. (2) and Table 1]. For the FMR, the classifica-

tion model is first applied to compute the group

membership probabilities [Eq. (4) and Table 3], based

on which group membership is determined with the

discrete acceptance–rejection method. The intensity

change is then obtained by sampling the Gaussian dis-

tribution for the selected group (Table 2).

Simulation with the MeHiM has one more step in the

initialization. Given the environmental parameters (i.e.,

MPI, SHR, and RH) at the storm’s occurrence, we use

the initial state model with the acceptance–rejection

method to determine the state for the first two steps.

Then, we continue the simulation by repeatedly choos-

ing the next state to visit according to the transition

probabilities [Eq. (7) and Table 5] with the discrete

acceptance–rejection selection and updating storm in-

tensity with the intensity change sampled from the

state’s corresponding response distribution [Eq. (6) and

Table 4].

During all simulations, the land model is applied after

the storm’s center hits land. The intensity change when

moving from ocean to land is computed as an inverse-

distance-weighted average of the predictions from the

land model and the over-the-ocean intensity model.

Storms with landfall intensity V0 smaller than the

background intensity Vb are assumed to keep their

landfall intensity over land, while storms withV0 greater

than Vb are simulated to decay according to the filling

model [Eq. (8)]. The over-the-ocean model is resumed

when the storm moves back to the ocean from land. For

the MeHiM, when the storm moves back to the ocean,

its initial state is assumed to be the same as the state

before it last made landfall. The simulation stops at the

end of the historical record of the track or when the

storm’ intensity becomes lower than 10kt. Each histor-

ical storm is simulated 100 times with each of the three

intensity models, and the comparisons with observations

are based on all realizations.

b. Spatial distributions

Figure 4 displays observed and MeHiM-modeled TC

intensity along historical tracks. The basin is divided as a

28 3 28 grid and, as an example, the 75th and 50th per-

centiles of the intensity values in each grid from the

observations are compared with those from simulations

(median over the 100 realizations). The simulations

capture relatively well the spatial variation of TC in-

tensity, although they appear smoother and seem to

underestimate the most extreme intensities in lower

latitudes (occurring over the Caribbean Sea and the

Gulf of Mexico) and overestimate the intensities in

midlatitudes especially on land (due to the limitation of

FIG. 3. Comparison of land decay model (red curves) and observed intensity evolutions

(gray curves) for different initial intensity ranges. The modeled decay is calculated with an

initial intensity equal to the midpoint value of the intensity range.
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the land decay model). Nevertheless, the MeHiM im-

proves over the OLS and FMR in capturing the ex-

tremes (not shown here; see other comparisons below).

c. Probability distributions

In this subsection, we investigate the models’ capa-

bility in capturing the probability distributions of vari-

ous key intensity and intensity change metrics. First, a

comparison of the histograms of observed (IBTrACS)

and simulated 6-h intensity change rate (6-h DV) is

shown in Fig. 5. Here observations and simulations over

land are removed to focus on the comparison between

the three over-the-ocean intensity models. All three

models capture the general features of the observed

distribution. However, simulations from the OLS have

6-hDV fall within a relatively narrow range from229 to

23kt. The FMR improves over the OLS to a range

from240 to 33kt. The MeHiM generates a larger range

of 6-h DV, from 254 to 41 kt, covering nearly the full

range of observations except the outlier. IBTrACS has a

range from 230 to 55 kt for 6-h DV, and the outlier at

the right tail of IBTrACS (Fig. 5b) comes from one

observation of 6-h DV of 55kt during the life cycle of

HurricaneWilma (2005), one of the most intense storms

ever recorded in the Atlantic basin. MeHiM did not

capture this outlier of extreme intensification, and it

generated larger extremes of deintensification com-

pared to observations (Fig. 5b).

We also compare the histograms of 24-h intensity

change (24-h DV) between observations and simula-

tions (Fig. 6). The distribution fromMeHiM simulations

is wider than that from the OLS and FMR and compares

better with IBTrACS. The simulated range of 24 hDV is

from 278 to 73kt for the OLS, from 2104 to 85kt for

FMR, and from 2101to 103 kt for MeHiM, compared

to a range from2110 to 95kt for IBTrACS.We find that

although both the FMR and MeHiM are able to simu-

late extreme 24-h DV, simulations from FMR have

lower probability densities than IBTrACS in most bins

that are larger than 35kt. MeHiM can better capture

the large intensity changes. Particularly, although the

MeHiM does not capture the outlier extreme 6-h in-

tensification (Fig. 5b), it produces higher probability

densities than IBTrACS for most bins of 24-h DV

greater than 30kt (i.e., RI; Fig. 6b). On the other

hand, although the MeHiM overestimate the extreme

6-h deintensification (Fig. 5b), it underestimates the

rates of most extreme 24-h deintensifications (Fig. 6b).

The large 24-h intensifications are likely generated by

the ‘‘lock-in’’ mechanism in theMeHiM, which supports

continuous large intensification once the storm enters

the extreme state and when the environment is favor-

able. The MeHiM lacks such a mechanism to support

continuous large deintensification, as discussed earlier.

Next, we compare the probability distribution of LMI

in the simulations and observations (Fig. 7). Among the

FIG. 4. Comparison of observed and MeHiM-modeled TC intensity (kt; color) in each 28 3 28 grid. The intensity
metrics plotted are (a) 75th percentile of observations, (b) median (over 100 realizations) of 75th percentile of

MeHiM simulations, (c) 50th percentile of observations, and (d) median of 50th percentile of MeHiM simulations.
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three models, the MeHiM compares with IBTrACS the

best. It captures the shape and peak of the LMI distri-

bution quite well, although it is smoother and misses the

‘‘fluctuations and bumps’’ in the tail, and as a result it

underestimates the extreme LMIs to some extent. The

OLS and FMR estimated LMI distributions have sig-

nificantly thinner tails. Also, FMR-estimated distribu-

tion has a substantially higher peak, and OLS-estimated

simulation has a significant right shift in the peak,

compared to IBTrACS and the MeHiM. Thus, the OLS

and FMR are likely to underestimate the LMI for ex-

treme storms and overestimate the LMI for relatively

weak storms.

To further investigate this matter, we examine the

LMI distribution for non-RI and RI storms separately.

The percentages of simulated RI storms by the OLS,

FMR, and MeHiM are 24.7%, 20.1%, and 26.1%, re-

spectively, while in IBTrACS this fraction is 30.5%.

Thus, the MeHiM improves over the OLS and FMR in

simulating the right fraction of RI storms. Furthermore,

as shown in Fig. 8, the two LMI distributions of the OLS

simulations are relatively close, so that the peak in the

LMI distribution of non-RI storms is shifted to the right

while the peak in the LMI distribution of RI storms is

shifted to the left, compared to IBTrACS. Therefore,

the OLS tends to overestimate the LMI of non-RI

storms and underestimate the LMI of RI storms. FMR

has a similar right shift in the LMI distribution for non-

RI storms and it overestimates the peak. Also, similar to

the OLS, the LMI distribution for RI storms in FMR is

left shifted and featured with a much thinner tail com-

pared to IBTrACS. Thus, FMR also tends to underes-

timate the LMI for RI storms. Significantly improving

over the OLS and FMR, the MeHiM captures the LMI

distribution of non-RI storms very well. The MeHiM

also captures the shape of the LMI distribution for RI

FIG. 6.As in Fig. 5, but for 24-h intensity change. Data are binned in

15-kt intervals.

FIG. 7. Comparison of PDF of lifetime maximum intensity be-

tween observations (gray) and model simulations (OLS in yellow,

FMR in green, and MeHiM in red). Overland points are removed.

Simulation results include 100 realizations.

FIG. 5. Comparison of histograms of observed (gray) and mod-

eled (OLS in yellow, FMR in green, and MeHiM in red) 6-h in-

tensity change in (a) linear scale and (b) logarithmic scale.

Overland points are removed. Data are binned in 10-kt intervals.

Simulation results include 100 realizations.
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storms much better, although the most extreme LMIs

for RI storms are still underestimated.

Comparison between Figs. 7 and 8 indicates that the

tail of the LMI distribution is largely contributed by RI

storms, as noted by Lee et al. (2016a), and thus the

statistical intensity models underestimate the tail of the

LMI distribution mainly because they underestimate

the LMI of extreme RI storms. Given that 80% of major

TCs (LMI . 96 kt) underwent RI historically, it is im-

portant to capture theRI distribution in order to capture

the LMI distribution. Being able to capture the distri-

bution of RI extremes, however, does not imply being

able to capture the tail of the LMI distribution. Im-

proving over the OLS and FMR, the MeHiM captures

well the tail of the 24-h DV distribution representing RI

(Fig. 6b), but it still underestimates the tail of the LMI

distribution (Figs. 7 and 8). This underestimation of

extreme LMIs also explains the underestimation of

spatial extremes in Fig. 4.

Next, we compare the simulated and observed prob-

ability distribution of the landfall intensity for the North

Atlantic coastline and its divisions of U.S. Northeast,

Southeast, andGulf ofMexico regions (Fig. 9). All three

models can capture the general shape of the landfall

probability distribution, but the MeHiM better captures

the tail of the distribution. Also, MeHiM has smaller

uncertainty bonds, compared to OLS, and the bonds

better contain the IBTrACS estimates, compared to

FMR. It is noted that for the northeasternU.S. coastline,

the distribution from IBTrACS is quite rough and the

percentile band of the model estimates is relatively

large, due to data limitations for this region.

d. Sample cases

Apart from capturing various statistical distributions, we

compare the performances of theOLS, FMR, andMeHiM

in simulating the intensity evolution of individual storms.

Figures 10a, 10d, and 10g show as an example the intensity

evolution of a typical TC, Hurricane Richard in 2010,

simulated by the OLS, FMR, and MeHiM, compared to

the IBTrACS observation. All three models can capture

the main features of the storm’s development at the early

stage, although the large dissipation at the end is not well

captured due to the deficiency of the simple land decay

model. The ensemble mean (over the 100 realizations)

from each model compares relatively well with the ob-

servation. TheMeHiM performs significantly better as the

LMI of the ensemble mean shifts toward the observed

LMI, compared to the OLS and FMR.

The intensity simulations for an extreme RI storm,

Hurricane Wilma (2005), are shown in Figs. 10b, 10e, and

10h. HurricaneWilma experienced the most intense rapid

intensification (95kt in 24h) over the period of 1979–2014

in the North Atlantic basin and reached an LMI of 160kt.

The LMI of the ensemble mean of the models is signifi-

cantly lower than the observation, but the MeHiM per-

forms better. This is somewhat expected given themodels’

underestimation of the tail of the LMI distribution (see

Figs. 7 and 8). However, even for such an extreme case, we

find that the ensemble of the MeHiM is able to cover the

observed LMI—the maximum (over the 100 realizations)

of the simulated LMI is 175kt from theMeHiM, while it is

143kt from OLS and 150kt from FMR. In addition, more

than 40% of the realizations from theMeHiM can reach a

LMI over 100kt, which is much more than that fromOLS

and FMR (;15%). Indeed, an upward shift over the early

development stage in the MeHiM realizations (indicated

by the shadings) indicates a larger simulated intensification

rate in theMeHiM compared to the OLS and FMR. Also,

MeHiM captures well the second intensity peak and the

following rapid deintensification.

In Figs. 10c, 10f, and 10i, an unnamed tropical de-

pression in 2003 is shown as an example of weak storms

with LMI less than 45kt. In this case, both FMR and the

MeHiM are capable of simulating the intensity evolution,

with the ensemble mean matching the observation. OLS,

on the other hand, significantly overestimates storm’s in-

tensity, with mean as well as the 20th–80th percentile en-

velope shift upward away from the observation. This

overestimation by OLS is typical for weak storms, as dis-

cussed before (see Figs. 7 and 8).

From the above results, we find that both FMR and

the MeHiM are able to simulate relatively weak storms,

while OLS tends to overestimate weak storms. The

MeHiM has significant advantage over both FMR and

OLS when simulating RI storms or storms with large

intensification. It is also noted that the models tend to

overestimate the intensity after making landfall for in-

tense storms, which indicates that the simplified land

model may not be sufficient to simulate a storm’s ex-

treme decay over land. These conclusions hold when the

FIG. 8. As in Fig. 7, but for RI storms (intensity increases by 30 kt or

more over 24 h; dashed curves) and non-RI storms (solid curves).
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models are trained and tested using nonoverlapping

datasets. The results for the models trained on 271 TCs

during 1979–2014 and tested on the remaining 284 TCs

during 1979–2014 are shown in the supplemental mate-

rial. Obtained distributions of 6-h intensity change

(Fig. S1 in the online supplemental material), 24-h in-

tensity change (Fig. S2), LMI (Fig. S3), and LMI con-

ditioned on the RI status (Fig. S4) are similar to those

shown in Figs. 5–8, respectively. Testing on sample cases

that are out of the training dataset is also further dis-

cussed in the supplemental material (Fig. S5).

4. Discussion

a. Effect of the ocean feedback variable

The three (overocean) intensity models are devel-

oped with four environmental covariates including three

atmospheric and one ocean feedback variable. As OCN

is not used in previous statistical models, here we test

its significance and examine how OCN represents TC–

ocean interaction. We use two storms as examples:

Tropical Storm Larry (2003) and Hurricane Katia (2011).

The upper two panels in Fig. 11 show simulated intensity

evolution for these two storms from the original MeHiM

(as discussed above), and the lower two panels show sim-

ulations from the MeHiM without OCN (rebuilt with

OCN removed). The MeHiM estimation compares well

with the observation, while the MeHiM without OCN

overestimate the intensity for Tropical StormLarry. In this

case, OCN played a significant role in preventing the

simulated storm from intensifying too fast, given that

Larry was a slow-moving storm. It is more interesting to

note, however, that including OCN may also better sim-

ulate extreme intensification. For Hurricane Katia, an RI

storm in 2011, simulations from theMeHiMwithOCNare

FIG. 9. Comparison of observed (thick dashed curves) and modeled (thin solid lines and shadings; yellow for OLS, blue for MFR, and

red forMeHiM) probability distributions of TC landfall intensity for (a) NorthAtlantic coastline (green, blue, and red segments shown on

the map), (b) northeasternUnited States fromMaine to Virginia (green segment), (c) southeasternUnited States from North Carolina to

Florida plus Gulf Coast of the United States (blue segment), and (d) Gulf Coast of Mexico (red segment). The 25th–75th percentile

uncertainty bonds of the simulations (shadings) are estimated from 100 realizations.
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better in terms of capturing the rapid RI phase, com-

pared to the simulations from the MeHiM without OCN.

In this case, the relatively weak effect of the ocean feed-

back during RI is captured by OCN. Thus, adding OCN

does not always make storms weaker in a statistical

model, and it may actually help to simulate storm’s rapid

intensification.

b. Effect of extreme state identification

The MeHiM performs well for simulating normal and

relatively weak storms but may underestimate extremes

(as shown in Figs. 7, 8, and 10). This underestimation of a

storm’s LMI is often due to the underestimation of rapid

or extreme intensification, which in turn is likely due to

the limitation in capturing the underlying extreme state

of intensity change [i.e., underestimating the probability

of entering the extreme state, as discussed in Lin et al.

(2017) for the FMR analysis]. Here we investigate this

limitation in the MeHiM by experimenting on four ex-

treme RI storms with maximum intensification rate

ranging from 30 to 85 kt within 24h. For each of these

storms, we run the MeHiM freely until the storm expe-

riences rapid intensification, when the occurrence of RI

is indicated by IBTrACS. At the time of RI, the un-

derlying state of intensity change is manually fixed to the

extreme state (regardless of the transition probability in

FIG. 10. Comparisons of observed (gray curve) and simulated intensity evolution for (a),(d),(g) Hurricane Richard (2010), (b),(e),(h)

HurricaneWilma (2005), and (c),(f),(i) an unnamed tropical depression in 2003. The simulated intensity evolutions fromOLS (yellow) are

shown in (a)–(c); simulations from FMR (blue) are shown in (d)–(f); and simulations fromMeHiM (red) are shown in (g)–(i). The colored

shading boundaries represent the deciles of 100 realizations while the solid colored curve is themean over the 100 realizations. The vertical

dashed lines highlight the period of observations that are over land, during which the landmodel is applied.Overland observations that are

less than two steps (12 h) are not highlighted.
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the model) during the next four steps (24 h, consistent

with the definition of RI). Thereafter, the model is re-

sumed to run freely. The results are shown, in compar-

ison with the original MeHiM runs, in Fig. 12, where the

black arrow indicates the occurrence of RI in each case.

We find that the simulations improve significantly with

the correction of the underlying states at the occurrence

of RI. This is especially the case for Hurricane Andrew

(1992). TheMeHiM performs well in simulating the first

part of the storm’s intensity evolution, but it fails to

capture the RI and thus greatly underestimates the peak

intensity. With state correction, the simulations are

shifted greatly toward observation and thus well capture

the observed LMI. (The rapid decay after landfall is

again not well captured for these extreme cases due to

the limitations of the land model. Further studies may

include combining MeHiM with a more advanced land

model, e.g., with decay rate modeled as a function of

initial intensity prior to landfall.) We also evaluate the

MeHiM’s performance and limitation in simulating

three recent destructive hurricanes in the 2017 Atlantic

hurricane season, that is, Hurricanes Harvey, Irma, and

Maria, which are all RI storms and out of the training

dataset, as shown in the supplemental material. Similar

to the cases in Fig. 12, the LMI of these extreme RI

storms are significantly underestimated by the MeHiM,

but the simulations from the MeHiM with state correc-

tion improve greatly.

This experiment confirms that although the MeHiM

improves over FMR in capturing the extreme state, it may

still underestimate the likelihood of extreme states. Future

research may focus on improving the state transition

probabilitymodeling of theMeHiM, that is, applyingmore

sophisticated classification models than the simple logistic

regression. This analysis also indicates that the MeHiM

may have a great potential for real-time operational

forecasting, since, unlike a homogenous model such as the

OLS (and similarly SHIPS), the state of intensity change in

the MeHiM can be manipulated through incorporating/

assimilating real-time information on the RI state, for ex-

ample, the probabilistic guidance RII (Kaplan et al. 2010).

5. Summary

In this study, we have developed aMarkov environment-

dependent hurricane intensity model, or the MeHiM,

FIG. 11. Comparisons of MeHiM simulated intensity evolution with (red) and without

(purple) ocean parameter. The observation is shown by the gray curve. Selected storms are

(a),(c) Tropical Storm Larry (2003) and (b),(d) Hurricane Katia (2011). The vertical dashed

lines highlight the period of observations that are over land, during which the land model is

applied.
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based on the North Atlantic TC records from IBTrACS

WMO archive and environmental parameters derived

from ERA-Interim reanalysis data over the period of

1979–2014. The model considers three hidden discrete

states, and each state is associated with a probability

distribution of intensity change. Themovement of storm

intensity change from one state to another is considered

as a Markov chain described by a transition probability

matrix. Both the intensity change and state transition

components of the model are dependent on environ-

mental variables (including potential intensity, vertical

wind shear, high-level relative humidity, and ocean

feedback) and storm variables (including current in-

tensity and previous intensity change). All the variables,

including the ocean feedback variable, which is applied

in statistical modeling for the first time, are found to be

significant. Similar to the FMR model discussed in Lin

et al. (2017), the MeHiM’s three states of intensity

change turn out to represent the storm’s slow, moderate,

and rapid intensity change, respectively. The MeHiM

improves over FMR as it accounts for the temporal

correlation of the states of intensity change and in-

tegrates the intensity change and state identification

components in a Markov framework. As a result, the

MeHiM significantly improves over FMR in better

capturing the extreme state and simulating rapid and

continuous intensification.

We evaluate the MeHiM by comparing simulated

historical storms with observations, where the influence

of land is included through a simple land decay model.

We find that the MeHiM shows a great improvement

over previous statistical models (such as the OLS and

FMR, built as baseline models in this study) in simu-

lating TC intensity climatology. The probability distri-

butions of TC intensity change rates (6- and 24-h DV)

and LMI simulated by the MeHiM are closer to the

observations. With the capability in simulating category

4 and 5 storms, theMeHiM can better capture the tail of

the LMI distribution, although it still slightly underes-

timates the tail. The MeHiM is limited in simulating the

most extreme LMIs, even though it can well capture the

tail of the 24-h DV distribution representing RI, in-

dicating that a mechanism of continuous intensification

beyond the temporal window of RI (i.e., 24 h) exists but

is not well captured by the model. The MeHiM also

improves over previous models in reproducing the ob-

served distribution of landfall intensity for regions with

relatively adequate data. The model can also be applied

to provide an advisory to areas with limited historical

data.

The MeHiM improves over the OLS (which is similar

to SHIPS) and FMR in probabilistically forecasting the

temporal evolution of intensity for individual storms,

although the MeHiM still may not capture a storm’s RI,

especially for storms that strengthen extremely in a short

time period. Nevertheless, we find that, when combined

with an extreme state correction for RI, the forecasting

can be greatly improved for most historical RI storms.

This result indicates the potential to significantly im-

prove the MeHiM through improving its state transition

probability model to better capture the extreme state.

This result also indicates a potential application of the

FIG. 12. Comparison of MeHiM simulated intensity evolution without (red) and with (blue) RI state correction. The observation is

shown by the gray curve. Selected four RI storms are (a),(e) Irene (1981); (b),(f) Isaac (2000); (c),(g) Andrew (1992); and (d),(h) Felix

(2007), from left to right. The black arrow indicates the onset of RI for each storm. The vertical dashed lines highlight the period of

observations that are over land, during which the land model is applied.
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MeHiM combined with a probabilistic RI guidance in

real-time operational forecasting.

Future studies may also include a comparison be-

tween the MeHiM and dynamic models, such as the

Coupled Hurricane Intensity Prediction System (CHIPS;

(Emanuel et al. 2004) and its simplified algorithm

(Emanuel 2017). The ultimate goal of our study is to

integrate the intensity model with a genesis model

and a track model into a complete hurricane climatol-

ogy modeling system, similar to Emanuel et al. (2008)

and Lee et al. (2018).
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